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Introduction: The moderately siderophile element
molybdenum has been used as an indicator in planetary
differentiation processes, and is particularly relevant to
core formation [for example, 1-6]. However, models
that apply experimental data to an equilibrium diffe-
rentiation scenario infer the oxidation state of molyb-
denum from solubility data or from multivariable coef-
ficients from metal-silicate partitioning data [1,3,7].

Partitioning behavior of molybdenum, a multi-
valent element with a transition near the J02 of interest
for core formation (~IW-2) will be sensitive to changes
in JO2 of the system and silicate melt structure. In a
silicate melt, Mo can occur in either 4+ or 6+ valence
state, and Mo6+ can be either octahedrally or tetrahe-
drally coordinated. Here we present first XANES
measurements of Mo valence in basaltic run products
at a range of P, T, and JO2 and further quantify the va-
lence transition of Mo. 	 1300
Table 1. Experiments analyzed from this and previous
studies. Silicate composition is indicated above expe-
riment labels. Piston cylinder experiments [3,5,6]
were metal-silicate partitioning studies, while con-
trolled atmosphere experiments had no metal added to
the starting composition.
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Experiments: Basaltic run products from 3 pre-
vious studies were selected for analyses, with attention
to variation in temperature, pressure, JO 2 , and amount
of Mo dissolved in the silicate phase (Table 1). A new
series of experiments were also conducted at controlled
JO2 in order to more fully explore JO 2 space.

One andesite doped with 0.13 wt% MoO 3 was ana-
lyzed from Righter et al. [2], a product that was melted
in air. Another set of hawaiites from piston cylinder
experiments by Righter and Drake [3] were run at near
constant pressure, temperature, and JO 2 , but contain
low amounts of Mo from 0.11 ppm to 11.78 ppm by
weight. Piston cylinder experiments using a basaltic
silicate composition performed by Acuff et al. [5,6]
were run at higher temperature and lower JO 2 .

New experiments for this study were performed us-
ing ankaramite basalt at conditions similar to the pre-
vious study by Danielson et al. [8]. A small amount of
Mo dopant (500 ppm) was added to natural ankaramite
to ensure detection.
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Figure 1. XANES spectra for controlled JO 2 experi-
ments performed for this study, showing K-edge ener-
gy shift to lower energy with more reducing condi-
tions. Pre-edge peak (at around 20007 eV) also de-
creases in intensity. An energy shift of the pre-edge
peak to higher eV does not occur, indicating no change
in Mo 6+ coordination from tetrahedral to octahedral.

Analyses: A monochromatic X-ray beam from a
Si(111) double crystal monochromator was focused
onto the sample and the fluorescent X-ray yield was
plotted as a function of incident X-ray energy (more
detail can be found in [9]). Mo K XANES spectra were
normalized to strontium as an internal reference ele-
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ment, then normalized so that the below edge intensity As oxygen fugacity decreases below IW-1, contri-
was zero and the above edge intensity was unity. The butions from Mo metal increase although Farges et al.
oxidation state of molybdenum was then inferred from [10] maintained that some contributions from Mo 2+

the energy of the K-edge position defined as the lowest cannot be ruled out.	 Farges et al. [10] suggested the
energy where =1 in the normalized XANES spectrum transition to Mo 0 dominance happens at around IW-3,
(Figure 1) [after 10]. Energy shift and intensity of the with Mo metal becoming visible at IW-4. 	 However,
pre-edge peak was used to determine coordination of assuming a linear trend in the ankaramite data, 	 Mo0

Mo6+ [10]. Mo foil and experiment KR-D, the extreme may not be reached until near IW-5. More data will be
oxidized end member Mo doped andesite were used as collected at lower JO2 to determine the amount of Mo 0

standards to form a linear trend for valence determina- contribution.
tion. 6.0 The moderate increased pressure of the basalt and

Results and Discussion: Ankaramite 1 bar expe- hawaiite experiments seems to have no effect on Mo
riments show a trend in average valence from Mo 6+ at valence, also observed in previous experiments [10].
the most oxidizing condition (IW+2) to nearly Mo 2+ at IW unkXRn RZt qfZKs prqsHrqs Wqvant tHtV 	 UHOHS
IW-2 (Figure 2). 	 The transition from Mo 6+ to Mo4+ (DUW ¶V q q DQWOH P \q KD q Hq RQ q OR q Ya- OHQFH q DQG q

occurs largely between IW and IW-1, in good agree- tion in silicate melts, but that will be studied in future
mqnt Rith Holzhqid qt al. [1] and WNqill q q Eg@ns	 experiments. 	 Although the hawaiites contain up to
[7], who concluded Mo changed dominant valence at 1.36% water, this is unlikely to explain any valence
around IW-1, from Mo 6+ to Mo4+. O’Nqill an0EggDs differences in experiments around IW-1 [11].
[7] also suggested that below IW, down to IW-3, Mo 4+ Conclusions: 	 Our data support the interpretation
and Mo 6+ coexist in equal amounts. Our results narrow of previous authors [1,3,5,6] that Mo 4+ is the dominant
the field of Mo4+-6+ coexistence to IW+1 to just below species at or below IW-1, with no Mo 6+, in contrast to
IW. At the conditions of core formation, near IW-2, the multi-vDqnHmodql R OO qiR and Eggins q ]. 	 (JJLQV q

Mo6+ is no longer present. Farges et al. [10] suggested Conditions below IW-1 may have a significant compo-
Mo5+ may be stable around IW. However, )DU qHV¶ q nent of Mo0 .	 Even though the nugget effect has not
al. [10] evidence for stable Mo5+ (determined from been reported for Mo at IW-1 or below, a contribution
additional electron paramagnetic resonance spectros- from Mo metal (or even Mo2+) may require modifica-
copy data) appears only in FeO-free systems, and thus tion of metal-silicate partitioning models.
Mo5+ is not likely to be present in experiments ex-
amined in this study. References:	 [1]	 Holzheid	 A.	 et	 al.	 (1994)
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Figure 2. Molybdenum average valence as a function
of oxygen fugacity relative to the iron-wüstite buffer
for experiments in table 1.

The lack of energy shift of the pre-edge peak (Fig.
1) suggests more than 90% of the Mo 6+ is in tetrahedral
coordination. This is the case for all JO2 where Mo 6+ is
present. Farges et al. [10] supported this system domi-
nated by tetrahedral Mo 6+ - octahedral Mo 6+ only
forms where network modifiers become scarce.
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